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Abstract. In recent years, a number of infrastructures have been pro-
posed for the collection and distribution of medical data for research
purposes. The design of such infrastructures is challenging: on the one
hand, they should link patient data collected from different hospitals; on
the other hand, they can only use anonymised data because of privacy
regulations. In addition, they should allow data depseudonymisation in
case research results provide information relevant for patients’ health.
The privacy analysis of such infrastructures can be seen as a problem of
data minimisation. In this work, we introduce coalition graphs, a graph-
ical representation of knowledge of personal information to study data
minimisation. We show how this representation allows identification of
privacy issues in existing infrastructures. To validate our approach, we
use coalition graphs to formally analyse data minimisation in two (de)-
pseudonymisation infrastructures proposed by the Parelsnoer initiative.

1 Introduction

The quality of medical research benefits from the collection of patient data from
different health care organisations. By analysing data from different sources,
researchers are able to study treatments from several angles, which can lead
to new insights. To facilitate the collection and dissemination of medical data,
several initiatives like the Dutch Parelsnoer initiative have developed data man-
agement infrastructures [11–13]. Such infrastructures store patient data collected
from health care organisations into a central medical research database and then
distribute such data to researchers. Besides providing data to researchers, they
should also allow the sharing of findings about patients’ conditions made by
researchers to hospitals in order to provide treatments to patients.

When distributing patient data, these infrastructures should protect the pa-
tient’s privacy by making sure that data are properly anonymised.In particular,
researchers should not be able to link data to a particular patient, or data from
different research projects to each other. However, it is not possible to just re-
move all identifiers from the data: the need to share findings with the patient’s
hospital implies that the data may need to be deanonymised. Thus, there is
a need to supplement data management infrastructures for medical research
with (de)pseudonymisation functionality. Depseudonymisation should be possi-
ble only following a rigurous process involving a coalition of several different
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parties; the infrastructure should technically ensure that other coalitions do not
have anough knowledge to correlate patient data.

The problem of depseudonymisation exemplifies the broader concept of data
minimisation [9], which is nowadays imposed by privacy regulations (e.g., EU
Directive 95/46/EC, HIPAA). Data minimisation decreases both the risk of
abuse by insiders [8] and the impact of information theft by outsiders. The
concept is gaining relevance as the increase in personal information exchanged
on-line has raised privacy issues not only about health care data, but also
search data, data on shopping habits, etc. However, comprehensive analyses
of data minimisation in these different settings are usually lacking. In discus-
sions on (de)pseudonymisation of health care data and proposed infrastructures
(e.g., [3, 10, 13]), the aim is usually to prevent knowledge of particular links by
particular actors; however, a full analysis of data minimisation that considers all
possible correlations allowed by a system and checks whether they are inherent
to the setting or preventable, is usually missing.

In [19], we presented a formal model that, given the information exchanged
between actors, analyses the knowledge of personal information that actors learn.
This model makes it possible to verify privacy requirements by checking whether
a particular coalition of actors can correlate particular pieces of information.
However, it neither provides a general comparison of all knowledge of all coali-
tions in different infrastructures, nor discusses the concept of minimality.

In this work, we study data minimisation in the Parelsnoer infrastructure for
health care data (de)pseudonymisation. We discuss general requirements for such
infrastructures, but focus our analysis on Parelsnoer (we briefly discuss related
proposals in Section 7). We introduce a novel formalism, called coalition graphs,
to express the profiles of personal information that can be compiled by coalitions
of actors within a system. We show how coalition graphs can be used to com-
prehensively model data minimisation, identify possible privacy improvements,
and verify their effect. Specifically:

– We capture different privacy risks by considering actors that only store what
they should store and actors that remember all information they observe;

– We show how coalition graphs can be derived automatically from a formal
model describing actors’ communication [19] ;

– By formalising requirements for distributing medical data for research, and
privacy consequences of using a central database, we model the “optimal”
situation in terms of data minimisation achievable by (de)pseudonymisation
infrastructures;

– Using coalition graphs, we analyse two (de)pseudonymisation infrastructures
proposed by the Parelsnoer initiative, and propose privacy improvements.

The paper is structured as follows. We first describe the setting of distributing
patient data for research, and two infrastructures proposed by Parelsnoer (§2).
We then introduce coalition graphs (§3). We derive an optimal coalition graph for
the Parelsnoer setting (§4), use it to analyse data minimisation in the proposed
infrastructures (§5), and analyse possible improvements (§6). Finally, we discuss
related work and conclude by providing directions for future work (§7).
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2 Pseudonymisation Infrastructure

In this section, we discuss the requirements for (de)pseudonymisation infras-
tructures for medical research databases. In particular, we consider the privacy
requirements defined within the Dutch legal framework regarding the processing
of medical data. We then present two (de)pseudonymisation infrastructures de-
veloped as a result of the Parelsnoer initiative (http://www.parelsnoer.org/):
one based on hashing, and one based on a trusted “pseudonymisation service”.

2.1 Setting

For medical research, data about a patient collected from different health care
organisations have to be linked together into a single dataset. Data integration,
however, is challenging because of the stringent constraints imposed by data
protection regulations. We now discuss the functional (FR) and privacy (PR)
requirements for the handling of medical data within the Dutch legal framework.

The Dutch legal framework constrains the identification of medical data. For
treatment, health care organisations are obliged to use the “burgerservicenum-
mer” (BSN: the Dutch social security number) (FR1); for other purposes, they
(and others) are forbidden to do so (PR1). Medical data may be used for re-
search (FR2) if anonymised so that association to the BSN or (indirectly) to the
patient is impossible, and different projects’ datasets cannot be linked (PR2).

However, in certain circumstances, this anonymisation needs to be reversed.
In case of a discovery beneficial for the patient (a so-called coincidental finding),
the health care organisations which collected the data should be notified so they
can provide treatment: full depseudonymisation (FR3). Moreover, if additional
patient data is needed for a certain research project, it should be possible to link
together data about the same patient: partial depseudonymisation (FR4).

To facilitate the provision of medical data to researchers, data collected from
different health care organisations can be stored into a single database [11–13],
hereafter called Central Infrastructure (CI). We describe the operation of sys-
tems with a CI by enumerating the main design decisions (DD) that cover the
handling of personal information. The CI stores the data about one patient from
different hospitals in one profile (DD1). It obtains this data directly from the
different hospitals (DD2). When a researcher needs a dataset, the CI compiles
it from its database and sends it to the researcher (DD3), who is not otherwise
involved in the pseudonymisation process. For extension of a dataset (i.e., par-
tial depseudonymisation), the researcher contacts the CI, which then compiles
the extended dataset without involving the original hospital (DD4). Finally,
depseudonymisation should be performed via a trusted third party to ensure
that it is only possible under strictly defined conditions (DD5).

2.2 Parelsnoer Initiative

This section presents two infrastructures for (de)pseudonymisation developed by
the Parelsnoer initiative [11, 12]. This initiative is a collaboration between eight
university medical centres in the Netherlands.

http://www.parelsnoer.org/
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Fig. 1. Parelsnoer Hash-Based Pseudonymisation Infrastructure (H-PI): pseudonyms
(left) and operation (right)

Hash-Based Pseudonymisation Infrastructure (H-PI). The first Parelsnoer pro-
posal for (de)pseudonymisation [11] uses pseudonyms for the storage and trans-
mission of medical data that are constructed using hash functions (Figure 1). In
particular, when providing data to the CI, hospitals use a hash h1 of a patient’s
BSN and birth date as pseudonym. This allows the CI to link data from different
hospitals without learning the BSN. Each research project has a separate iden-
tifier; when the CI distributes data for a research project, the project identifier
is hashed along with the pseudonym h1 into a new pseudonym h2. For partial
depseudonymisation, the CI needs a table containing the links (h1, h2) for all
distributed datasets. For full depseudonymisation, the CI additionally needs a
table containing the identities of hospitals for all patient pseudonyms h1. Each
hospital stores a table containing the links (bsn, h1) for its own patients.

One drawback of this approach is that an attacker who learns a pseudonym,
can try to depseudonymise it using a dictionary attack: this is feasible because
the entropy in the combination of BSN and birth date is at most 42 bits [11].
In addition, the fact that hospitals and CI need to keep pseudonym translation
tables poses significant risks of data breaches. Note that H-PI does not use a
TTP to control depseudonymisation; as shown later, this makes it non-optimal
in terms of data minimisation.

Pseudonymisation Service Infrastructure (PS-PI). Parelsnoer’s Pseudonymisa-
tion Service Infrastructure [12] addresses the limitations of the hash-based ap-
proach using a TTP called pseudonymisation service (PS). The pseudonyms used
in the system are called “pseudocodes”. These pseudocodes are unique given a
BSN and a “domain” (i.e., the CI, hospitals, and research projects) in which
patient data should be linked. The mapping between BSNs and pseudocodes
and between pseudocodes from different domains is calculated using a domain-
specific secret known only by the PS.

Figure 2 shows the translation steps (left) and the information that is exchanged
and stored (right). First, the PS translates the BSN into a pseudocode in the hos-
pital domain, which the hospital uses to send medical data to the CI. The CI
requests the PS to re-translate the pseudocode to its own domain so it can link
data from different hospitals together. When data are distributed to a researcher,
the pseudocode is translated to the project domain. For depseudonymisation,
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Fig. 2. Parelsnoer Infrastructure with Pseudonymisation Service (PS-PI): pseudonyms
(left) and operation (right)

pseudocodes are translated back to the BSN in exactly the opposite order. For
partial depseudonymisation, the researcher provides the research pseudocode to
the CI, which requests the PS to translate it to its own domain. The CI remem-
bers which research domain belongs to which researcher; it includes the research
domain in the depseudonymisation request to the PS, which compares it to the
actual domain within the pseudocode. For full depseudonymisation, the CI then
requests the PS to translate the pseudocode from the CI domain to the hospital
domain based on the list of hospitals that have provided data.

This infrastructure solves the drawbacks of the hash-based infrastructure.
Since pseudocodes are calculated using a secret known only by the PS, this in-
frastructure is not subject to dictionary attacks. Moreover, the hospital and CI
no longer store tables to translate pseudocodes to BSNs. Indeed, depseudony-
misation is not possible without the PS, reducing privacy impact when data of
hospitals and the CI are compromised.

2.3 Scenario

We introduce a scenario that is general enough to capture all aspects we are in-
terested in yet small enough to allow a clear visualisation. We consider (coalitions
of) six different actors: three hospitals umc1, umc2, and umc3; one researcher r;
and CI ci and TTP ttp (in PS-PI: the PS). These actors exchange information
about a particular patient. Two of the three hospitals have medical data about
the patient: umc1 knows three pieces of information d1, d2, and d3; umc2 knows
d4, d5, and d6. The items di are non-identifying; i.e., they represent attributes for
which different patients may have a common value. The hospitals identify their
patient records by BSN bsn. The third hospital umc3 does not know the patient.
Researcher r needs data about the patient for two different research projects:
d1 and d4 for one project, and d2 and d5 for a second project. By considering
two hospitals with patient data and one without, we can consider correlation
between these two types of hospitals and other actors, and between two different
hospitals that both know the patient. Verifying privacy with respect to data of
one single researcher from two different projects is sufficient: if she cannot link
the data, then neither can two different researchers from two different projects.



150 M. Veeningen, B. de Weger, and N. Zannone

Our scenario has three steps. First, umc1 and umc2 provide their patient data
to ci. Second, r receives patient data from the ci in two different datasets for the
two different projects. In both steps, the TTP may be involved. Third, as part of
the investigation in the first research project, the researcher learns a coincidental
finding d7 that may be important for treatment of the patient. We consider the
moment when the coincidental finding has been made, but depseudonymisation
has not been performed yet. In particular, the hospitals do not know d7 yet, so we
can reason about coalitions that enable hospitals to link d7 to the corresponding
patient.

3 Coalition Graphs

In this section, we introduce coalition graphs as a graphical way of studying
data minimisation. First, we phrase the data minimisation problem in terms of
profiles derivable by coalitions of actors. We then introduce coalition graphs as a
way to compare infrastructures. Finally, we show how to obtain coalition graphs
automatically, and how to use them for data minimisation analysis.

3.1 Data Minimisation, Coalition Knowledge, and Forgetting

The data minimisation principle aims to prevent abuse of personal information
by restricting the information an actor can collect to what is strictly neces-
sary to carry out assigned duties. The adherence of actors to data minimisa-
tion can be analysed with respect to their behaviours. Honest actors store only
the information the system allows them to store. However, actors may observe
other information. We call actors who store all the information they observe
honest-but-curious. As an example, the PS-PI architecture aims to ensure that
depseudonymisation can only happen though the PS. However, this data minimi-
sation goal can only be achieved when the other actors are honest: if hospitals
and the CI are honest-but-curious, they can link data by remembering pseu-
docodes and thus bypass the PS. We analyse data minimisation with respect to
arbitrary coalitions of honest and honest-but-curious actors, thus clarifying the
assumptions under which privacy properties hold. Although honest and honest-
but-curious actors differ in what they remember, they both only obtain the
information that they are supposed to obtain. Privacy protection against actors
who actively try to obtain information they should not know, is out of our scope
(but could be captured by coalition graphs).

In [18], we proposed personal information models as a representation of ac-
tors’ knowledge of personal information. A personal information model consists
of items of interest (i.e., data items, identifiers, and entities) and linkability re-
lations between them. Data items and identifiers are pieces of information that
characterise an entity. Differently from data items, identifiers uniquely identify
an entity (e.g., social security number). The set O denotes the items of interest,
i.e., sensitive information to be protected. In our scenario, O = {bsn, d1, ..., d7},
where bsn is an identifier and d1, . . . , d7 are data items. This set does not con-
tain pseudonyms because their knowledge in itself is not relevant; the fact that
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they can be used to link different pieces of data together is accounted for by the
linkability relation. A profile is a set O ⊂ O of items of interest characterising
the same entity; e.g., {bsn, d1, d2, d3} represents the patient’s profile at umc1.

Actors have partial knowledge of the personal information model. Set A de-
notes the set of actors involved in the system (in our scenario, A = {umc1, umc2,
umc3, ci, ttp, r}). These actors are honest; we denote their honest-but-curious
counterparts with a ∗, e.g., ci∗ ∈ A∗ is the honest-but-curious counterpart of ci.
A coalition of actors is any subset of A∪A∗ in which actors can be either honest
or honest-but-curious. For instance, {umc1, ci

∗} is a coalition formed by a honest
umc1 and a honest-but-curious ci. Coalition A can be extended to coalition B,
denoted A � B, if any honest actor in A is also in B (either honest-but-curious or
honest), and any honest-but-curious actor in A is also honest-but-curious in B.
For instance, {umc1} � {umc1, ci} � {umc1, ci

∗} but {umc1
∗} �� {umc1, ci

∗}.
The knowledge of coalitions is captured by the profile detectability relation �.

Given a coalition A and a set O ⊂ O of pieces of information, A � O expresses
that coalition A knows: 1) the items in O (detectability); and 2) the fact that
the items in O are about one single person (linkability). For instance, {umc1} �
{bsn, d1, d2, d3} indicates that umc1 knows bsn, d1, d2, and d3 and it knows that
these items of interest belong to the same patient. Similarly, {r} �� {d1, d2}
indicates that r is not able to link d1 and d2. Profile detectability � satisfies two
properties: 1) if A � O and A � B, then B � O; and 2) if A � O and P ⊆ O,
then A � P . We say that A � O implies B � P if A � B and P ⊆ O.

3.2 Coalition Graphs, Comparison, and Reduction

The information known by coalitions of actors can be visually represented as
a directed graph. Nodes are pairs (A,O) such that A � O. Edges are defined
by the partial order ≤ on nodes that combines the partial orders on coalitions
and profiles. (A1, O1) ≤ (A2, O2) expresses that coalition A2 is an extension of
coalition A1, and profile O2 is a superset of profile O1. Formally:

Definition 1. The coalition graph for relation � is the graph (V,≤) with:

– V = {(A,O) | A � A∗; O ⊂ O; A � O}
– (A1, O1) ≤ (A2, O2) iff A1 � A2 ∧O1 ⊆ O2.

Infrastructures can be compared wrt data minimisation by means of their coali-
tion graph. If in infrastructure X every coalition can derive at least the same
information that it can in infrastructure Y , then the coalition graph of X in-
cludes all nodes of the coalition graph of Y . Moreover,≤ is defined independently
from �, so if the two coalition graphs share two nodes and these nodes are con-
nected in one graph, then they are also connected in the second graph. Based
on these observations, we introduce the notion of achieving better privacy.

Definition 2. Let X and Y be two infrastructures with coalition graphs GX ,
GY , respectively. We say that X achieves (strictly) better privacy than Y if GX

is a (proper) subgraph of GY .
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For visualisation purposes, we introduce the reduced coalition graph (V ′,
) of a
coalition graph (V,≤). In reduced graphs, redundant information from coalition
graphs is eliminated: V ′ is the set of minimal nodes in V , i.e., nodes that are
not implied by any other nodes in V ; 
 is the non-reflexive, transitive reduction
of ≤ on V ′. The reduced coalition graph of an infrastructure can be determined
automatically by enumerating the knowledge of all coalitions.

To verify whether infrastructureX achieves better privacy than infrastructure
Y , we compare their reduced coalition graphs (VX ,
X), (VY ,
Y ). However,
this comparison cannot be done by checking whether (VX ,
X) is a subgraph
of (VY ,
Y ). This is because nodes that are minimal in one graph may not be
minimal in the other graph. For instance, suppose ({a, b}, {d1, d2}) ∈ VX and
({a}, {d1, d2}) ∈ VY . In such a case, ({a, b}, {d1, d2}) /∈ VY because the node is
not minimal in Y : it is implied by ({a}, {d1, d2}). Instead, in order to compare
two infrastructure, we visualise their reduced coalition graphs in a single graph.
The nodes of the new graph are VX ∪ VY ; for each node, we indicate if it is
implied in X , Y , or both. Edges are the non-reflexive, transitive reduction of ≤
on VX ∪ VY . Infrastructure X then satisfies better privacy than infrastructure
Y if all nodes in VX ∪ VY are implied by the nodes in VY .

3.3 Studying Data Minimisation by Coalition Graphs

Data minimisation analysis using coalition graphs is performed as follows. First,
requirements and design decisions are formalised and represented in an “optimal”
coalition graph. Then, an infrastructure is analysed through an iterative process:
1) determine the coalition graph of the infrastructure; 2) compare this graph to
the optimal graph to detect design drawbacks; 3) propose enhancements.

The optimal graph is based on functional requirements and design decisions
that specify the information that actors should know. They are modelled as
profile detectability statements A � O; the statement A � O and any state-
ment it implies hold in all infrastructures providing the required functionality.
Privacy requirements state that certain actors should not know certain infor-
mation. These are formalised by profile undetectability statements A �� O; the
statement A � O and any statement implying it should not hold in well-designed
infrastructures. Section 4.2 shows how to determine the optimal graph from �.

The coalition graph of the system is computed using the formal analysis
method in [19]. Given a description of initial knowledge and communication, the
method determines which copies of items of interest (coalitions of) actors can
detect, and which items they can link. Intuitively, actors can link items through
identifiers (e.g., BSNs, pseudocodes, and session identifiers). Profile detectability
� holds if there are detectable and mutually linkable copies of all items in the
profile. We developed a tool (see http://www.mobiman.me/downloads/) that
automatically generates the coalition graph by running the implementation of
[19] on all coalitions, eliminating implied nodes, and visualising using GraphViz.
The method in [19] only considers honest-but-curious actors. To represent hon-
est actors, we have extended it by introducing a Store operation that describes
what information actors should store. Intuitively, a data item is added to the

http://www.mobiman.me/downloads/
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Table 1. Privacy consequences of functional (FR) and privacy (PR) requirements
and design decisions (DD)

Requirement/Decision Privacy consequences

(FR1) Hospitals store data using BSN {umc1} � {bsn, d1, d2, d3},
{umc2} � {bsn, d4, d5, d6}

(FR2) Researchers obtain dataset {r} � {d1, d4, d7}, {r} � {d2, d5}
(FR3) Full depseudonymisation {umc1, ci, ttp, r} � {bsn, d7},

{umc2, ci, ttp, r} � {bsn, d7}
(FR4) Partial depseudonymisation {umc1, ci, ttp, r} � {d1, d2, d3, d7},

{umc2, ci, ttp, r} � {d4, d5, d6, d7}
(PR1) BSN not for research purposes {r∗, ci∗, ttp∗} �� {bsn}
(PR2) Researcher cannot link datasets {r∗} �� {d1, d2}, {r∗} �� {d1, d5},

{r∗} �� {d2, d4}, {r∗} �� {d4, d5}
(DD1) CI collects data {ci} � {d1, d2, d3, d4, d5, d6}

{umc1, ci, ttp} � {bsn, d1, d2, d3, d4, d5, d6}
{umc2, ci, ttp} � {bsn, d1, d2, d3, d4, d5, d6}

(DD2) Data transfer between UMC, CI {umc1
∗, ci∗} � {bsn, d1, d2, d3, d4, d5, d6},

{umc2
∗, ci∗} � {bsn, d1, d2, d3, d4, d5, d6}

(DD3) Dataset from CI to researcher {ci∗, r} � {d1, d2, d3, d4, d5, d6, d7}
(DD4) Partial depseudo w/o hospital {ci, ttp, r} � {d1, d2, d3, d4, d5, d6, d7}
(DD5) (De)pseudonymisation by TTP (See consequences of (FR), (PR), (DD))

knowledge base of an actor only if he is allowed to store it. For instance, in the
model of PS-PI, Store does not store BSNs in the knowledge base of PS.

We compare the coalition graph to the optimal graph by visualising both
in one picture. Non-optimal nodes highlight privacy drawbacks in the system
design. The analysis of why these nodes exist may raise enhancements, which
are then analysed to verify whether the drawbacks have been addressed.

4 Privacy-Optimal Graph

In this section, we analyse the optimal privacy achievable in (de)pseudonymisation
infrastructures for medical research databases. An “optimal” coalition graph for-
malises the privacy consequences of functional requirements and design decisions.
We also formalise privacy requirements defining the information a given actor
should not know.

4.1 Formalisation of Requirements and Design Decisions

Table 1 formalises the privacy consequences of the functional requirements, pri-
vacy requirements, and design decisions described in Section 2.1. Actors’ knowl-
edge is taken after the CI has distributed the datasets to the researcher and she
has made a coincidental finding, but before depseudonymisation has taken place.

Functional requirements (FR1) and (FR2) directly translate to the fact that
hospitals and researchers know certain data about the patient. Functional re-
quirements (FR3) and (FR4) state that full/partial depseudonymisation should
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be possible. In particular, a hospital, the TTP, the CI, and the researcher to-
gether should be able to perform full depseudonymisation, i.e., they should be
able to link d7 to bsn. Similarly, for partial depseudonymisation, they should be
able to link d7 to the patient data.

Privacy requirement (PR1) states that BSNs cannot be used for research
purposes. Thus, even if the CI, TTP, and researcher are curious and combine
their knowledge, they should not be able to derive the patient’s BSN. For (PR2),
the researcher should not be able to link any information from his first dataset
to any information from his second dataset, even if he is curious.

Introducing the medical research database CI has several privacy consequences.
Design decision (DD1) states that the task of the CI is to collect and link the
data from different hospitals; it has two consequences. First, the CI knows the
medical data from the two hospitals in one profile. Second, if a hospital, CI and
TTP combine their knowledge, they can link the BSN to the full patient record
at the CI (by definition of the collection process). By design decision (DD2),
we consider systems where the CI and UMC communicate directly during the
collection process. At the time of this communication, the hospital knew the
BSN, and the CI knew the link to the full patient record. Therefore, if both
have remembered some details of the communication such as the session iden-
tifier (i.e., they were curious), they can link the BSN to the full patient record
without the PS. Design decision (DD3) states that the researcher is involved
in (de)pseudonymisation merely as the passive recipient of the datasets. During
the provision of such a dataset, the CI knew the link between records in the
distributed dataset and the full patient records. If the CI is curious and remem-
bers this link, and the researcher discovers an accidental finding related to some
record, then together they can link the finding to the record. Design decision
(DD4) states that hospitals are not involved in partial depseudonymisation;
instead, it is performed by linking the incidental finding of the researcher to
the patient record at the CI using the TTP. Finally, design decision (DD5) is
the introduction of the TTP. This design decision is reflected by the fact that
TTP is needed for data collection (DD1) and full (FR3) and partial (FR4),
(DD4) depseudonymisation, as well as by the fact that the TTP is introduced
for research purposes and therefore should not know BSNs (PR1).

4.2 Privacy-Optimal Graph

Figure 3 combines the privacy consequences in Table 1 into a coalition graph.
Intuitively, it is the coalition graph of a hypothetical infrastructure O-PI which
satisfies all requirements and design decisions, and whose design is optimal in
terms of data minimisation. Nodes represent unavoidable disclosures.

The graph is obtained from Table 1 by considering which consequences ap-
ply to any particular coalition. Given a coalition A, we consider which profile
detectability statements A � O are implied by the entries in the table. For
instance, for coalition A = {umc1}, the table implies detectability of profile
{bsn, d1, d2, d3}, which corresponds to a node in the graph. Coalition A = {r}
can detect two profiles {d1, d4, d7} and {d2, d5} but it should not be able to
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Fig. 3. Reduced coalition graph in optimal situation (O-PI). Node captions represent
coalitions A and profiles O, respectively, with A � O; ’b’ means bsn, ’1’ means d1, etc.

Fig. 4. Comparison between reduced coalition graphs of Parelsnoer hash-based pseudo-
nymisation infrastructure (H-PI) and optimal situation (O-PI)

link them together, so the two profiles occur as two nodes in the graph. On
the other hand, for coalition A = {umc1, umc2}, A � {bsn, d1, d2, d3} is implied
by {umc1} � {bsn, d1, d2, d3}, and A � {bsn, d4, d5, d6} is implied by {umc2} �
{bsn, d4, d5, d6}. These two profiles can be linked together because they both
contain the BSN; therefore, they are represented by node A � {bsn, d1, . . . , d6}.
Informally, coalitions of honest actors can link profiles if they have stored a
shared identifier; coalitions of honest-but-curious actors can additionally link
profiles if they have exchanged personal information from the profiles. These
conclusions can be formally derived using the method in [19].

The reduced coalition graph of the optimal situation O-PI makes it possible
to assess the extent to which existing infrastructures satisfy data minimisation.
Namely, we can compare the reduced coalition graph of an existing infrastructure
to the reduced coalition graph of O-PI, as described in Section 3. If the two
graphs are the same, the infrastructure achieves optimal privacy. Otherwise,
the privacy issues of the analysed infrastructure can be identified by analysing
non-optimal nodes in the graph.

5 Coalition Graphs for Parelsnoer Infrastructures

In this section, we analyse data minimisation in the Parelsnoer infrastructures
by comparing their reduced coalition graphs to the optimal one.
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Hash-Based Infrastructure. Figure 4 compares the reduced coalition graph of
the hash-based Parelsnoer infrastructure (H-PI) to the optimal situation (O-
PI). The dotted nodes represent nodes that only occur in H-PI’s coalition graph
and thus point to violations of data minimisation. The solid nodes are also in
O-PI’s coalition graph and thus unavoidable. (H-PI does not use the TTP; it
occurs in this graph because we compare it to the optimal situation, in which
the TTP is needed for (de)pseudonymisation.)

The non-optimal nodes can be explained by the use of translation tables for
depseudonymisation, as opposed to using the services of the TTP. Hospitals need
to remember the pseudocode sent to the CI for full depseudonymisation, which
implies {umci, ci} � {bsn, d1, . . . , d6}. The CI needs to remember the pseudocode
sent to the researcher, implying {ci, r} � {d1, . . . , d7}. Combining the translation
tables gives {umci, ci, r} � {bsn, d1, . . . , d7}.

The privacy difference between using translation tables and using a TTP can
be observed from the coalition extensions needed to make non-optimal nodes
optimal. First, for any non-optimal node A � O, node A ∪ {ttp} � O is optimal.
This expresses that actors A are in fact allowed to compile profile O; the problem
is that H-PI does not ensure that this only happens through a rigorous process
involving the TTP. Second, for any non-optimal node A � O, node A′ � O is
optimal in which hospitals and CI in A are made curious. This expresses that
these actors are allowed to store more data than is desirable. Such data are
needed to overcome the absence of the TTP.

Finally, H-PI satisfies the privacy requirements from Table 1. Indeed, the BSN
itself never leaves the hospitals; however, the model does not capture that the
BSN can be determined from its hash using a dictionary attack.

Pseudonymisation Service. We now discuss privacy in the Pseudonymisation Ser-
vice infrastructure. We compare it to the hash-based infrastructure (Figure 5(a))
and to the optimal situation (Figure 5(b)).

Figure 5(a) shows that all non-optimal nodes of H-PI (shown dotted) are
eliminated in PS-PI; however, PS-PI introduces new non-optimal nodes (shown
dashed) which reflect two new privacy problems. The first problem is that the
PS ttp learns the patient’s BSN in the pseudonymisation process, and can
contribute this information to coalitions that should not know it. This is re-
flected by nodes {ttp∗} � {bsn}, {ci, ttp} � {bsn, d1, . . . , d6}, and {ci, ttp, r} �
{bsn, d1, . . . , d7} (in H-PI, these actors know the same data, but without the
BSN). The second problem is that the PS is able to link profiles of researchers
and hospitals without involving the CI. This problem, combined with the first
problem, is reflected by nodes {ttp, r} � {bsn, d1, d2, d4, d5, d7} (linking profiles
from different research projects); {umc1, ttp, r} � {bsn, d1, d2, d3, d4, d5, d7} and
{umc2, ttp, r, } � {bsn, d1, d2, d4, d5, d6, d7} (linking profiles from researcher and
hospital); and {umc1, umc2, ttp, r} � {bsn, d1, . . . , d7} (combination of the two).
As Figure 5(b) shows, these nodes, which all include the PS, are exactly PS-PI’s
non-optimal nodes.

The analysis shows how privacy protection in PS-PI crucially depends on the
trustworthiness of the PS. If we assume that the PS is never involved in privacy



Formal Modelling of (De)Pseudonymisation 157

(a) Comparison of coalition graphs of PS-PI and H-PI

(b) Comparison of coalition graphs of PS-PI and O-PI

Fig. 5. Coalition graph comparison of the Pseudonymisation Service infrastructure
(PS-PI) with the hash-based infrastructure (H-PI) and the optimal situation (O-PI)

breaches, then coalitions including the PS are not relevant; in this case, PS-PI is
optimal. However, without this assumption, PS-PI provides worse privacy than
H-PI by offering additional ways to establish links and find out the patient’s BSN.
In particular, the fact that a curious PS can find out the BSN violates privacy
requirement (PR1). To mitigate this, measures should be taken to make sure
that the PS cannot use the BSN, e.g., by carrying out all computations on the
BSN using trusted hardware (as done by Parelsnoer).

6 From Pseudonymisation Service to Optimal System

In the previous section, we have identified the privacy issues in the PS-PI infras-
tructure. We now discuss solutions, and then consider a hypothetical infrastruc-
ture incorporating these solutions and analyse it using coalition graphs.

The first privacy problem is that the PS learns the patient’s BSN. Although
it may be mitigated using trusted hardware, it is desirable to technically ensure
that the BSN does not leave the hospitals, i.e., that requirement (PR1) is fully
satisfied. The main challenge in achieving (PR1) is that the CI needs to link
records from different hospitals. In particular, all hospitals should use the same
pseudonym of a patient when communicating with the PS. Intuitively, all hospi-
tals should use a shared secret to generate pseudonyms, or in case they do not
share any secret, they should use the same procedure to generate pseudonyms,
for instance hashing BSNs as in H-PI. The drawback of the first solution is that
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Fig. 6. Comparison of reduced coalition graphs of the improved PS infrastructure (PI-
PI) with the original PS infrastructure (PS-PI) and the optimal situation (O-PI)

depseudonymisation can also be performed by hospitals that do not have a record
of the patient (e.g., umc3 in our scenario). On the other hand, if the pseudonyms
are generated using one procedure, they may be vulnerable to dictionary attacks
as in H-PI. We leave further analysis of this issue as future work.

The second problem is that the PS can help researchers link their data to
hospitals or other researchers, bypassing the CI. To solve this, the PS should
not be able to link pseudonymisation requests for different domains. This means
that when the CI compiles a dataset for distribution, it should modify its linkable
pseudocode before requesting the PS to repseudonymise it. The CI may either
use the same secret for all datasets, or use different secrets for different datasets
or records: both approaches seem possible.

To evaluate the privacy impact of the discussed solutions on PS-PI, we analyse
an infrastructure PI-PI that incorporates the solutions in PS-PI. The order of
the messages exchanged in PI-PI is as in Figure 2, but the information transmit-
ted is changed. To make sure the BSN does not leave the hospitals, all hospitals
share a symmetric key; instead of providing the BSN to the PS, they provide an
encryption of the BSN under this key. To prevent linking of distributed datasets
by the PS, the CI has a symmetric key for each research domain; when com-
piling a dataset for distribution, it sends to the PS not his pseudocode itself,
but an encryption of the pseudocode under this symmetric key. Instead of re-
translating the pseudocode from the CI’s domain, the PS simply constructs a
new pseudocode using this encryption as pseudonym.

Figure 6 compares PI-PI with the original infrastructure PS-PI and the opti-
mal situation O-PI. As the figure shows, PI-PI indeed solves the privacy prob-
lems in PS-PI; however, one problem remains. Namely, besides umc1 and umc2,
umc3 can also help in depseudonymisation although it does not know the pa-
tient. Note that H-PI does not have this problem because umc3 does not know
the BSN and birth date of the patient. Hence, the privacy of H-PI and PI-PI
is formally incomparable. In practice, we have a choice between depseudonymi-
sation by any hospital knowing a secret (PI-PI), or by any third party able to
perform a dictionary attack (H-PI).
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7 Related Work and Conclusions

In this work, we formally analysed privacy by data minimisation in the setting of
(de)pseudonymisation infrastructures for centralised medical research databases.
We discussed the unavoidable privacy consequences of the requirements of this
setting, and used them to analyse two infrastructures proposed by the Dutch
Parelsnoer initiative. In the first, depseudonymisation is performed using tables,
introducing privacy risks when data of hospitals or the CI are compromised.
In addition, the use of hashes makes it vulnerable to a dictionary attack. The
second solves these issues, but lets a TTP learn more information than necessary:
it learns the BSN and can link distributed datasets. We discussed solutions to
these issues and analysed a hypothetical infrastructure incorporating them.

Apart from Parelsnoer, there are several other proposals for (de)pseudonymi-
sation of patient data for medical research. Serveral proposals [13] in the German
legal framework are similar to H-PI and PS-PI, so we expect the findings of
our analysis to also apply there. A model from Belgium [3] uses not central
storage but a pseudonymisation service which also distributes the data (though
encrypted so that the PS cannot read it). In such models, the pseudonymisation
service can also be split into two parties [14] which separately do not learn any
information. More general approaches for the exchange of medical data between
health care providers [6, 15, 20] or pseudoynmised data in general [17] may
also be adapted for pseudonymisation for research purposes. To our knowledge,
there are no studies that analyse or compare privacy characteristics of these
systems; this is an interesting direction for future work. Ultimately, the question
is whether optimal data minimisation in this setting is (practically) achievable.

To formally analyse data minimisation, we introduced a novel representation
of actor knowledge called coalition graphs. This graph shows which coalitions of
actors in a system can compile which profiles of personal information. Honest
and honest-but-curious actors capture different assumptions on their behaviour.
An “optimal” coalition graph captures unavoidable knowledge; by comparing it
to the coalition graph of an existing system, areas for privacy improvement can
be identified. We have developed tools to automatically obtain a coalition graph
from a formal model of communication.

Other formal methods, e.g. [1, 2, 4, 5, 7, 19], analyse knowledge of communi-
cating actors. These methods verify that particular information cannot be derived
by particular actors. In contrast, we express all relevant knowledge of all coali-
tions of actors in one single representation. These methods also do not usually
distinguish between honest and honest-but-curious actors. In BAN-style [2] be-
lief logics, a “Forget” operation has been proposed [16] usable for privacy analy-
sis of honest actors [1]. Our work is more similar to state exploration techniques
(e.g., [4, 5, 7, 19]). These only consider an (outside) attacker who may be passive
or active, but always remembers everything he observes. The operation of honest
actors could be simulated indirectly using these techniques; instead, our framework
captures their operation explicitly.

Two issues not considered in our model are interesting for future work: first,
linking medical data using statistical methods rather than by pseudonyms;



160 M. Veeningen, B. de Weger, and N. Zannone

second, deriving implicit knowledge [19], for instance whether a researcher knows
at which hospital the medical data in his dataset have been collected.
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